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Continuity Equation
The continuity equation describes the transport of some quantities like fluid or
gas. The equation explains how a fluid conserves mass in its motion.

Many physical phenomena like energy, mass, momentum, natural quantities and
electric charge are conserved using the continuity equations.

This equation provides very useful information continuity Equation
about the flow of fluids and its behavior during its

flow in a pipe or hose. The hose, a flexible tube, M )\
Vi

whose diameter decreases along its length has a ‘\‘\---q_

. . ~——— \
direct consequence. The volume water flowing : v |k
through the hose must be equal to the flow rate on //_—* /
the other end. U — /"'

The flow rate formula. 4

The Equation of Continuity and can be expressed as:
M = p;; Vis A + P2 Vig Aip + - + Pin Vi

M =P, Vo1 Agt + Poz Voo Agot ----- + Pon Von Agmyeeeeeeesees (1)




With uniform density, equation (1) can be modified to:
Q=v, A+V, Apt....+v, A

Q =V, AV Agoteeo Vo Agyeenenenns (2)
Where,

Q = Flow rate

Pi1 =Pi2--= Pin= Po1 = Po2=---- = Pom

The continuity equation in fluid dynamics describes that in any steady state

process, the rate at which mass leaves the system is equal to the rate at which
mass enters a system.

The differential form of the continuity equation is:

0p At+ V-(pu) =0
Where,
t=Time, p = Fluid density, u = Flow velocity vector field

The continuity equation is defined as the product of cross-sectional area

of the pipe and the velocity of the fluid at any given point along the pipe
is constant.



Equation Of Continuity For Time Varying Fields

Statement: Equation of continuity represents the law of conservation of charge.
That is the charge flowing out (i.e. current) through a closed surface in some
volume is equal to the rate of decrease of charge within the volume :

Where,
| is current flowing out through a closed surface in a volume and
-dg/dt is the rate of decrease of charge within the volume.

As | =[J.ds and q=Jpdv

Where J is the Conduction current density and p is the Volume charge density.
Substituting the value of | and g in equation (1), it will become

[J.ds=-[dp/dtdv  (2)

Applying Gauss’s Divergence Theorem to L.H.S. of above equation to change
surface integral to volume integral,



J[divergence (J)] dV = -[(dp/dt) dv
As two volume integrals are equal only if their integrands are equal
divergence (J) = — dp/dt

This is equation of continuity for time varying fields.

Equation of Continuity for Steady Currents:

As p does not vary with time for steady currents,
that is dp/dt = 0
divergence (J)=0

The above equation is the equation of continuity for steady currents.



Any continuity equation can be expressed in an "integral form" (in terms of a
flux integral), which applies to any finite region, or in a "differential form" (in
terms of the divergence operator) which applies at a point.

Continuity equations underlie more specific transport equations such as the
convection—diffusion equation, Boltzmann transport equation, and Navier—
Stokes equations.

Continuity equation in Integral form
Mathematically, the integral form of the continuity equation expressing the

rate of increase of g within a volume Vis: (1(1 o
e # j-dS =0

The integral form of the continuity equation states that:

The amount of g in a region increases when additional g flows inward through the
surface of the region, and decreases when it flows outward,;

The amount of g in a region increases when new q is created inside the region, and
decreases when q is destroyed;

Apart from these two processes, there is no other way for the amount of g in a region
to change.



Continuity equation in Differential form L iV.j=o
Jl
. a )
In the case of conserved quantity ap +V-j=0
ot
Continuity equation in Electromagnetism v.J = _0_10
ot
Continuity equation in Fluid dynamics .o o
Ot
.. .. ou
Continuity equation in Energy and heat i +V-q=10

tinuity equation in Quantum mechanics . Okl




Current Electricity

+ Any motion of charges from one section to another section is current.

When two bodies at different
potentials are linked with a wire, free
electrons stream from B to A, until
both the objects reach the same
potential, after which the current stops
flowing. Until a potential difference is
present throughout a conductor,
current runs.

¢ The division of physics that deals with charges in motion is termed as
current electricity.

The current carried by conductors due to flow of charges is called conduction
current.

The current due to changing electric field is called cisplacement current or
Maxwell’s displacement current.



Maxwell’s displacement current.

Displacement current is a quantity appearing in Maxwell’s equations.
Displacement current definition is defined in terms of the rate of change of the
electric displacement field (D).

Displacement Current Formula

It can be explained by the phenomenon observed in a capacitor.

Current in a capacitor: When a capacitor start charging, there is no conduction of
charge between the plates. However, because of change in charge accumulation with
time above the plates, the electric field changes causing the displacement current as
below

Ib=JpS=S

Where,
S is the area of the capacitor plate.
I is the displacement current.

Jp is the displacement current density.

D is related to electric field E as D = €E
€ is the permittivity of the medium in between the plates.



Displacement Current Equation

Displacement current has the same unit and effect on the magnetic field as is
for conduction current depicted by Maxwell’s equation-

VxH=Jd+J,

Where,
H is related to magnetic field B as B = uH
M is the permeability of the medium in between the plates.
J is the conducting current density.
Jp is the displacement current density.

We know that V(VxH)=0 and V.J=-9dp/ot = -V.oD/ot
using Gauss’s law thatis V.D=p

Here, p is the electric charge density.

Thus, Jp = 0D / at displacement current density is necessary to balance RHS with
LHS of the equation.



Inconsistency of Ampere’s law :

For steady currents,
Ampere’s circuit law says

VxH=]
Taking divergence on both sides,

V- VxH=V-J

Which is the equ of continuity for steady currents
This is inconsistent in the equ of continuity for time varying fields.

To overcome the inconsistency, Maxwell assumed that another term has to be added
so that the divergence vanishes.

Making use of Gauss law in the equation of continuity, we have D,

0




=> V-(J+6—D)=O

ot
oD :
|t = total current density
o
D - displacement vector
% - displacement current density
‘Pl

We now replace J by total current density 7 a0 in Ampere’s circuit law,

We have, ot
d
div(Vx H =diw | J
1w (V x H) il ( 9t )
Here v N @ I'V-th Maxwells equation

ot



Electromagnetic induction and Faraday’s law

From Faraday’s law, d ¢)
we have the induced emf e = ———
dt

Let E be the electric field at a point.
Then, the work done in moving a unit +ve charge
through dl is E.dl

Here, the work done moving through a unit d
+ve charge around closed path C is / E-dl = / B - ds

Making use of Stokes theorem, we have

/curlE-ds:— d—B-ds
dt




1
€0
V><E=—QE
ot :
i 1 oE
VxB = ; + 28
ce, c° ot
V-B=0

differential form

Maxwell equations

Q
dA = £
2 R
9
@dl=—§qB-dA)
] dl = Mo(]c +80%([E-dA)) Ampere’s Law

-dA=O

I

S

integral form

How are these equivalent?

Gauss’s Law for E

Faraday’s Law

Gauss’s Law for B




Maxwell equations and electromagnetic waves

V-E =£ mdA_g Gauss’s Law for E
€0 : S
0B dl = ——(fB -dA Faraday’s Law
VxE =-— § .FE] )
ot i
dl = u (1 re ([E -dA ) Ampere’s Law
VxB = Mo]"‘SOMO Ep | ’ ’ )
V:-B=0 'dA =0 Gauss’s Law for B
B
differential form integral form 1
i MO = 2



Poynting’s Theorem

The Poynting Theorem is in the nature of a statement of the conservation of
energy for a configuration consisting of electric and magnetic fields acting on
charges.

Consider a volume V with a surface S. Then the time rate of change of
electromagnetic energy within V plus the net energy flowing out of V through S
per unit time is equal to the negative of the total work done on the charges within
V.

A second statement can also explain the theorem - "The decrease in the
electromagnetic energy per unit time in a certain volume is equal to the sum of
work done by the field forces and the net outward flux per unit time".

u
This is summarized in differential form as: . C =V:- S + J-E

ot

where VeS is the divergence of the Poynting vector (energy flow) and J°E is the
rate at which the fields do work on a charged object (J is the current density
corresponding to the motion of charge, E is the electric field, and ¢ is the dot
product).



Using the divergence theorem, Poynting's theorem can be rewritten in
INTEGRAL FORM:

_2 udV:# S.-dA + [ J-Edv

8t Vv av Vv

where is the boundary of a volume V. The shape of the volume is arbitrary but
fixed for the calculation.

ELECTRICAL ENGINEERING
In electrical engineering context, the theorem is usually written with the energy
density term u expanded in the following ways which resembles the continuity

equation: % B OB
V:S+¢E- + — - +J-E=0,
o o

where

= go is the electric constant and L is the magnetic constant.

oE
= o E - Bt is the density of reactive power driving the build-up of electric field,

B 0B
Ho

J - E is the density of electric power dissipated by the Lorentz force acting on charge
carriers.

is the density of reactive power driving the build-up of magnetic field, and



Poynting’s Theorem and Vector

As em waves propagate through space, from the source to the receiver, there exists
a simple relation between the rate of energy transfer and the amplitude of electric
and magnetic fields. This is embodied in “Poyntings Theorem”.

Statement :
The vector product of electric (E) and magnetic fields (H) at any point (E X H)
gives a measure of rate of energy flow per unit area at that point.

Quantitative Analysis:

Considering the Maxwell’s equation associated with Ampere’s and Faraday’s
laws,

OB
ot
oD

Curl H =J+ — 2)
ur +8t |

(1)

Cuorl B, = —




Taking a scalar product of equ. (2) with E and equ.(1) with —H, we have

| oD
E-CurlH=E-J+E-7t 3)
JB
- - ! — - — 4
H-Cul E = H o (4)
Adding eqn (3) and eqn (4), we have
oD aB

We know that

H-Qurl E —E-Curl H = div(FE

e




oD 9)2]
- div(EXH)=J-F E-—+ H - —
iv( ) —l—( v 8t)
Now,
oD COE 1 0. . 10
bw €n €, b E—a&ot,-gi\b'b) —a—(b Dl
where, D = ¢l
Similarly
aB OH 1 f) 10
o H -l — o, ‘H)— ——(H - B
0 = pope - = Spopr 5 (H - H) = 53 (H - B)
where, B —=uH

Hence, we have




Multiplying the above equation (5) by volume element dtr and
Integrating over volume 7 enclosing the surface S

We have,

1 ,
[.J E)dr+/2§ (F-D+1I - B)dr—/div(\ExH)dr—O

-

/(J-E)d'r | i/gt(ED | H - B)dr | %(Ex H).-dS = 0——- (6)

S

(i) Interpretation of / (J - F)dr
Let the current distribution at the position of charge ¢. move with velocity v,

(J-E)d"':[idl-ﬁ'




dq
E.dl.E:/dq-v-E=Z:qi(’vi‘E'é)

E, : electric field at the position of charge q;

Electromagnetic force acting on the ith charged particle given by Lorentz
expression

Fi = ¢i(E; +v; X By)
Hence, workdone per unit time on the charge q; by the field is given by
ow; F-dl
ot ot

_F'UZF}'U.i:qi(E.,j‘l"l)iXB,,j)”Ug'
= g; - (vi - Ey)

Hence, the rate of doing work is given by




(ii) Interpretation of / _( B )+ H - Bt

If we allow the volume 7 to be arbitrarily large, the surface integral in equ.(6) can
be made to vanish by placing the surface S sufficiently far away from the surface
so that the field cannot propagate to this distance in finite time,

(i.e)

:f) (Ex H)-dS =10

0
ot

/1(E D+ H - B)d7+%—1::0

9(/1<E.D+H.B>+W):o --------- (7)

(i.e)

ot 2

Since W involves velocities, it represents K.E of the system.
This means,

2

Equ.(7) represents conservation of energy

1
U:/ ~(E-D+H - B)dr
Il space



(iii) Interpretation of % (Ex H)-d5 =0
4

For the conservation of éhergy, U oW
+ = —
ot ot

35 (Ex H)-dS

S

LHS: describes the rate of change of energy of em field and of the particles
contained within the volume t . Thus, the surface integral must be considered as
the energy flowing out of the volume element T bounded by the surface S per unit
time.

The Vector S = (F x H) represents the amount of em field energy passing
through unit area of the surface in unit time and the direction of flow is normal to
vectors E and H

S = (E x H) is called Poynting Vector

In differential Form, we can write the above equation

oU
T L e e R0
o/ —I—at—l—vs 0




Electromagnetic Potentials ( 5 and ,, )

( Scalar and Vector Potentials )

We have from the celebrated Maxwell’s equations,

divD = p (1)
divB =0 (2)
oD This means that vector B can be represented
curlH = J + W (3) by curl of another vector A
OB
curlE = ——  (4)

ot
B - CUI”IX ( 5) Where Z is a vector point function

uation (2), it is obvious that vector B is Solinoidal functi




Substituting equation (5) in equation (4)

0 -
We have, curl ¥ = ~ 5 (Cm lA)
0A
il E4+ — ) =
mu( +{%) 0 (6)

. oy ® . — : -‘4 o« o .
From equation (6), it is obvious that (E = OT is irrotational and must be equal
to the gradient of some scalar point function !

oA

+ W = —gradqﬁ (7)

ﬁ A4

=—gm¢—?§(&




Introducing a vector X and a scalar (»’5 both being functions of (x,y,z,t) =>
we have the so called *“ Electromagnetic potentials” )

Gﬁ => Scalar potential

Z => Vector potential

Maxwell’s equation in terms of { and O

Considering the fourth Maxwell’s equation

D
p-Curle,u-J-I-u-da—t




Substituting B and E in terms of _{ and @, we have

ot ot

Curl (Curl X) =uJ -I-,uts2 ( grad ¢ — ﬂ)

2A
gladdlvz VAA=puJ- ue%gradqb ;Leaatz

2
RZ2A — ueaaf grad(divz-l-,ue%):—ue] (9)




We know that
divD = p

edivE = p

A
divE=p/e = div (—gra.dqb — %_f) = p /e

(ie) V¢ | %/tl (divA)= p/ec

0_:2 f

Add & Subtract e 5 i)

ta

to the above equation

9,
V2¢—u65£2—+a (divA+u65?) = —p /€ . .oo(8




Nonuniqueness of Electromagnetic potentials:

B = curlz

ﬁ —grad ¢ — %

For any ,:f and m f} and Ezcan be uniquely determined. The Converse 1s
not true. Because Curl gradient of a function vanishes.

We can add gradient of A to A without affecting vector B.
A = A+ grad A

B = —grad ¢ — 2 (Z —gradA)

ot
R




Replacing @ by OA

¢ = ¢ — o
0A
E = —grad ¢’
grad ¢’ — —
©  Bocul A
B = curl (A" — gradA)
B =curl A
I
E = —grad (gb + E) ~ 5 (A" — gradA)
0A

—orad ¢’




A'= A+ grad A

gy 90

A => Gauge function

dA

- —— => Gauge transformation

Jl

B=-curl A




Maxwell’s equations in terms of 1, b

2 o 82/1_ . ‘(9_0!) L
VA — e 57 prad (hv A+ e 8t) — —pJ eeee(1)
52&) o d o |
2 . iz Y
Vie—meTm 5 (‘h A+pe ‘?t) pIe eel2)
J¢
divA+ pue— o = (0 - Lorentz Gauge
5 0* A 3
VA — ,LL€82:—,LLJ .eee(3)
2 82
R 0 ) v




-
Potentials Aand ¢satisfying (3) and (4) Inhomogeneous D’Alembertian
equations are called Retarded potentials.

Invariance of Lorentz Gauge

df
div A —=U
v +uem
2, AN
— ; g
div (A gmj’\)+ucat(g)+at) 0
; 12
(]'n'rA, -|-l[(— adt B v2 1'\ — ll'[:%f:;\
> L
VA —pe— Ye = A

A =0




