INSTRUCTION SET - 8051

8051 INSTRUCTION SET

- 1. DATA MOVE instructions
 - 2. ARITHMETIC instructions
 - 3. JUMP and CALL instructions
- 4. LOGICAL instructions.

DATA MOVE INSTRUCTIONS

MNEMONIC	DESCRIPTION	REMARKS
MOV, Rr	A ← Rr	Contents of any one of the registers R0R7 is moved in A.
MOV A, add	A ← (add)	Contents in the mentioned address in internal RAM is moved into A.
MOV A, #n	A ← r	Data 'n' is immediately moved into A.
MOV A, @Rp	A ← (Rp)	Data at the address shown by R0 or R1 is moved into A.
MOV DPTR, #nn	DPTR ← nn	16-bit number (the address in external RAM) is moved into DPTR.
PUSH add	,	2.27 11

ARITHMETIC INSTRUCTIONS

- 1. INCREMENT and DECREMENT
- 2. ADDITION and SUBTRACTION.
- 3. MULTIPLICATION and DIVISION.
- 4. DECIMAL ADJUST Accumulator.

MULTIPLICATION

MUL AB: Multiply A by B, i.e., (A)

 $(A) \times (B)$

Mnemonic	REMARKS		
MUL AB	(A) ← Lower byte of result.(B) ← Higher byte of result.	ero are Three renges	

DIVISION

DIV AB : Divide A by B

MNEMONIC	Remarks
DITAD	(A) ← Integer part of Quotient.(B) ← Integer part of Remainder.

DECIMAL ADJUST ACCUMULATOR

A decimal number is represented in BCD form. Two packed BCD numbers form a two-digit number. The addition of two BCD numbers may be a non-BCD number. So, the Decimal Adjust Accumulator instruction is used to get the result in A in the BCD form (i.e., in decimal form).

DAA: Decimal adjust the sum of the two numbers in A.