Schmidt's Orthogonalisation Process

Introduction

- It is a method for ortho-normalising a set of vectors in an inner product space
- The process takes a finite, linearly independent set

$$S = \{v_1, \dots, v_k\} \text{ for } k \leq n$$

- Generates an orthogonal set $S' = \{u_1, ..., u_k\}$ that spans the same k-dimensional subspace of \mathbb{R}^n as S.
- This method is named after Jorgen Pedersen Gram and Erhard Schmidt.
- In the theory of Lie group decompositions it is generalized by the lwasawa decomposition.

CNTD...

Introduction

- In mathematics, an orthogonal basis for an inner product space V is a basis for V whose vectors are mutually orthogonal.
- If the vectors of anorthogonal basis are normalized, the resulting basis is an orthonormal basis

Steps

- This process consists of steps that describes how to obtain an orthonormal basis for any finite dimensional inner products.
- Let V be any nonzero finite dimensional inner product space and suppose that {u1, u2, . . . , un} is any basis for V.
- We will form an orthogonal basis from this basis say {v1, v2, . . . , vn}

Steps

- Step 1: Let v1 = u1
- Step 2: Let $v_2=u_2-proj_{w_1}u_2=u_2-\frac{\langle u_1,v_1\rangle}{\|v_11\|^2}v_2$ where W_1 is the space spanned by v_1 , and $proj_{w_1}u_2$ is the orthogonal projection of u_2 on W_1 .
- Step 3: Let $v_3=u_3-proj_{w_2}u_3=u_3-\frac{<\!u_3,\!v_1>}{\|v_11\|^2}v_1-\frac{<\!u_3,\!v_2>}{\|v_21\|^2}v_2$ where W_2 is the space spanned by v_1 and v_2 .
- Step 4: Let $v_4 = u_4 proj_{w_2}u_4 = u_4 \frac{\langle u_4, v_1 \rangle}{\|v_11\|^2} v_1 \frac{\langle u_4, v_2 \rangle}{\|v_21\|^2} v_2 \frac{\langle u_4, v_3 \rangle}{\|v_31\|^2} v_2$ where W_2 is the space spanned by v_1 and v_2 .

Example

• Let $V = R^3$ with the Euclidean inner product. We will apply the Gram-Schmidt algorithm to orthogonalize the basis $\{(1, -1, 1), (1, 0, 1), (1, 1, 2)\}$

• Let
$$u_1 = (1, -1, 1)$$
 $u_2 = (1, 0, 1)$ $u_3 = (1, 1, 2)$

· Following the steps:-

• Step 1: Let
$$u_1 = v_1 \rightarrow v_1 = (1, -1, 1)$$

• Step 2:
$$v_2 = (1,0,1) - \frac{(1,0,1)(1,-1,1)}{\|(1,-1,1)^2\|} (1,-1,1)$$
$$= (1,0,1) - \binom{2}{3} (1,-1,1)$$
$$= \left(\frac{1}{3}, \frac{2}{3}, \frac{1}{3}\right)$$

Example

• Step 3:
$$v_3 = (1, 1, 2) - \frac{(1,1,2)(1,-1,1)}{\|(1,-1,1)^2\|} (1,-1,1) - \frac{(1,1,2)\left(\frac{1}{3},\frac{2}{3},\frac{1}{3}\right)}{\left\|\left(\frac{1}{3},\frac{2}{3},\frac{1}{3}\right)^2\right\|} \left(\frac{1}{3},\frac{2}{3},\frac{1}{3}\right)$$

$$= (1,1,2) - \frac{2}{3}(1,-1,1) - \frac{5}{2}\left(\frac{1}{3},\frac{2}{3},\frac{1}{3}\right)$$

$$= \left(-\frac{1}{2},0.\frac{1}{2}\right)$$

• Here $v_1=v_2=v_3=(1,-1,1),\left(\frac13,\frac23,\frac13\right),\left(-\frac12,0.\frac12\right)$ respectively forms an orthogonal basis for R^3