3

Magnetostatics

31. Current Density J : "

i the concept © _
murth:]::Efltrt?:;ﬁi%a:l;:iﬁri;ed in Eirclﬁt theory. Curremi density
is defined as the ratio of the current to the surface area whose plane
is normal to the direction of charge motion. 1t is denoted by J and
is a vector having direction of charge motion.
Consider a surface ds whose normal n is :
velocity of charge then according to above definition

urrent density is

parallel to v, the

dl
= o |
J ds (1)
or din==Jds
o1 di=J.nds
I=\ V.ds - (2)
s
Regarding current density it is worthy to Fig., 31

note that . |
(iy If a current flows in a thn surface layer as shown in

fig. 3-2 (a), theso called surface current density is more useful,
It is defined by the current per unit length i.e.

15!.],,*&1 (3
] [ i
7 o—
{1138 it T O (g
(a) ()
Fig, 32

(ii) It is some times useful to express current density in terms
of the velocity of the elementary charges or charge density., If there
are n charged particle per unit volums each having a charge e, then

* See cxample 4 and problem 16,
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the charge enclosed in the cylinder of length | and arca of cross-
section 5 as shown in fig. 3-2 (b) will

g=ne (S
S0 the current thmugh cross-scctional arca S

dg dl
I—.ﬁm —-{:m Sly=neS )
1.2, I=ne Sy
This in turn implies that
J’=Si=-nev
ie. vectorially J=nev=py (as p=ue) .(4)

(3) When a current I flows in a uniform cross-section S,
normally to it :—

I= [J.ds= fJds cos O=J [ds=JS

or : Id1=J8§ dl
or _ Idl=JnS dl
or Idl=Jdr (as Ja=J and Sdl=dr) P )

Equation (5) converts the current element fdl to current density
element J d-.

(4) Ohm’s law is V=IR.
But as I=J58 and R=[/aS
S0 V=(JS) % (l/aS)
o o f-‘-' J=a(V!)
s Bul‘. we lm::-w that by definition (V/)=E
g £l »  J=oF
or vectorially J=dE. e(6)

This is the form of Ohm’s law in terms of current density and
electric intensity.

(3) As - J=¢E
curl T=curl (¢E)

ie. curl J=e¢ curl E [as o 15 constant]

ie. curl Y=g curl (—grad ) [as E= —grad V]

ie. curl J=0 [as curl grad ¢=0] ...(7)
.3 i.e. current density is irrotational,
! (6) By definition
Ky I= [ J.ds

If we consider a closed surface, conservation of charge requires

that the net steady current passing through the surfuce be zero.
Ao o . Thus
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% .
or L_ V.Jdder=0 (as @ J.ds= IT V.d tfr)
5

Since the law of conservation of charge holds good for any

arbitrary vol +
V.J=0 or divJi=0 v (8)

Equation (8) is frequently called the eqn. of continuity for
steady currents and according to it for steady currents, current
density is solenoidal,

§ 32 (A) Ampere's Law of Force*

Ampere performed a series of experiments to find the force
between current carrying conductors, He found that in case of two
elements Iidl, and /,d1, seperated by a distance r the force between
the elements — >

(1) varies directly as the product of magnitudes of current

(2) varies inversly.as the square of distance between the two®

current elements,

(3) depends upon the nature of the medjum.

(4) depends upon the l*ngths and orientations of the two

current elements.

(5) is attractive if the currents flow in the same direction and

repulsive il they flow in opposite direction.

In general case of pair of currents as shown in fig. 3'3 analyti-
cally the force which current I
exerts on I, when both are in free

space is given by
o Ho I:ﬂ, X {'l:ﬂj = I’}
Fu="2L11, 56 156 [
Eni (ﬁ.}

where the line integrals are taken
around the two loops and the
constant p, is called the perme-
ability of free space and is arbitrary IHI_:m to be dmx 10~ Nfamp?
(or H/m). Egn. (A) is the mathematical statement of Ampere’s
observations about forces between current carrying loops and is

called Ampere’s law of force. :

Fig. ¥3

* This law is different from Ampere's circuital law which is commonly
refered as Ampere's law in lituture and is deult with in § 3-3,
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& i

=" (B) Biot-Savart law (Definition of maguetic Induction B).
~ Ampere's force law

F“=f;_:r Fa J’lﬁl]ﬁ:w} (1)

is not of much practical value because the force cannot be expressed
asithe interaction of current f; with the field of current /;. However

eqo. (1) can be written in a more practical forms as y
dl
Fa=1 ﬁ dly % [‘%Iﬂ -ﬁ: I:.:"]
ie. Fyye= 9ﬁ' 141, % B, (2)

where  By= Bo £ Iodlyxr we(3)

dnSy r* 1
can be taken to be the field of circuit 2 at the position of the
element L dl, of circuit-1.

The vector B is called the magnetic induction. vector, magnetic
flux density or magnetic field, Its unit is web/m** which is some-
times also called Tesla.

" From equation (3) it is evident that the magnetic induction B
at position r due to a current carrying circuit of element /dl will be
i [ Idixr B
B= ?“ T I:.FL]
The above equation for B is called  g!
Biot-Savart. law or Laplaces formula, 3
Regarding Biot-Savart law it is worthy p
to note that— :
(1) Itis based on experimental
dbservations of . Ampere and
is an inverse square law 'so Fig, 34
may be viewed as the magnetic analogue of Coulomb’s
law and is used to calculate B at a point in case of current
carrying conductors,
(2) If the current I is distributed in space with a current

density J then as

I dl=Jdr - [from egn. 5 of § 3'1]
=t '!? & ..(B)

(3 If there is 2 single charge moving with velocity v then as

* Weber==volt-s:c. and ] weber/m?=10% Gauss,
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| n‘l_ n'l-—chE:.: vdg
50 4-'.": dg [v:::r}
ie. n:ﬁ q ':—‘:;:',5—'-} (1)
or B=pyepv X 4?':.?3
But as = 51‘ and E= 4':::4"“
80 Bs‘r:;E (2)

This is the single and compact relation between the electric
and magnetic fields of a uniformly moving charge. And from it,
it is clear that as » << ¢, B << E i.e. the electric field is much
stronger than ma.netic ficld, in case of a moving charged particle.

J“‘J{E:‘U Applications :

(c,) Long straight wire : P is a point at a fixed distance d
from a long wire OQ carrying a current [, where B is to be evalu-

ated. Let us consider a small element ] at O as shown in fig, 3°35,
Using Biot-Savart law for this element have

Idixr
dp="1
4 dw 3
Idl sin ¢

dp=tu % Sl ¢

» dme 2
where n is a unit vector |
to the plane containing I dl

and r and is directed into the
plane of page,

MNow from fig. 3°5

dl sin d=r dg
and r=d sec @
. _ Pl [**2cos §
o nll[Tese,
. by il
le.  B= de n.-[Sm v _ahurs n
M U)
fjr nm‘_(_ n
4m\d (1)
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This rclation indicates that the value of B is same for all
points at the same distance from the wire, Thus lines of magnetic
induction are circles concentric with wire and lying in a plane
perpendicular to it.

3t

_(ep) Circular Coil (or loop) :

Let us consider a coil of radius a and carrying a current I.
The magnetic field dB at a point P on its axis at a distance z from
the centre, due to a current element of length dl will be

My Tdlxr
JB--i'n: r2

_ Fig, 36
As here the angle between dl and r is always 90°
__'ﬁ.f_tﬂ
dB=4 7 (1)

Now if the planc of the coil is L to the plane of paper, the

t at the loop points perpendicularly
ments around the loop r is | todl,
henze dB is always L to the plane containing r and d1. Thus 4B
must lie in the plane of paper asshown in fig. 3°6. 1t can be
resolved into two components one A8 cos 0 along the axis of the
coil and the other dB sin @ | to the axis. By symmetry the com-
ponent of B | to the aais vanishes for complete circuit as the
an element is cancelled by the field due
So the resultant B is in the direc-

vector dl for a current, elemen
out of the page. As for all ele

component of dB due 10

ion of the axis and is equal to
et B B=J dB cos dm vesl(2)
fhere m is a unit veztor along the axis as shown in fig. 3°6.
_So substituting the value of dB from eqn, (1) in (2)
e ne o My g [dlcos ¥
ol 114“:5 coat.
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126 Electromagnetic Theory

But from fig. 3*6
cos #=(afr) dl=ad¢$ and rizq’—l—z’

£ :am
By 2mia?
= @z
If there are N turns in the coil J - NI
B, 2nNIag®
P=dr @ " (3)
This is the required result and from this it is clear that

(1) If the point is at the centre of the coil i.e. z=0, egn (3)
reduces to

E_4n( a ] " . (4)
_ (2) 1If the point is at a large distance from the centre of the
coil i.e. z >> a, eqn (3) reduces to

B=}_§ﬂ_(2nhft‘a*) "

ie. n

50

dm\ 2%
Fa 2m
re. = | —
“ () (%)
with m=NTJ (=a®) n=NIS 1

( (as S=ra? p) .(6)
As expression (3) represents

of moment m ay distance z on jts axis, we come to t
that for a distant pojnt 4 current :

dipole of moment mepyzg, "8 CUITENt acts asa magnetic
(¢s) Solenoig,

A solenoid js g long wire w i
: ound in a -
CArTYIng an electric current, e
Wn (=NIL) is the g
L l-lmhi.:r of 1,'["-“_5 .
car Per unijg | .
tr]:cmg 4 current 1, uniform|y wound roupg , eyling ongt . ea.'“h
@, the number of turys i length dx of soleng = ki

magnetic field at the axja) point P dye o thi - W, iy
the element a5 5 coil) is I

Packed helix ang

; Ix (@ xE)ie "
of advance of & nght hand screw, |

in the sense
figure 37, We have

rom the BEOmetry of the
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x=gcoth
and dx= —a cosec? § d§
="e
50 dB= i
[—2mnl sin 0] d@ n
: _Fo
i.e. B= 41:[1“-'11']

Ya—ainﬂ dd n

1
&
B=n
MNow two cases are possible. .
(1) If the solenoid is of infinite length (L>>a) and the point
P is well within the solenoid
8, - 180 and 6, = 0

ie. 2mnl [cos @,—cos &;] n

(1)

(2) 1f the point P is at one end of solenoid
g+ 9 and & -0

50 B=§—T“: (2enl) n=34 ponl n (3)

e Al From expressions (2) and (3) it is clear that the field strength
" at the end of a long solenoid is just one half that at the centre
" and so half the lines of force passing through the central_ section
of a long solenoid pass out through the sides before reaching the

end. . .

Example 1. Starting from Biot-Savart law calculate the diver-

gence of magnetic induction vector B (M.U. 1981)
Solution. According to Biot-Savart’s law

e pol (dlxr

e B= 4 i__r’_

div B=7 :[Ifgfri‘lxr:l

A T
10 _ (i
div n=f;-i-] v-( _f_,')

. w(1)
_Butas
i . l'.ii"l" (A % CY=C+curl A—A-+cur] C

} dl=e\ « r
?'("‘;r)‘“,a'ﬂ“” dl-.:fl-curl;; : (2

. |
=
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So equation (1) reduces 1o
- WANE: )
div “—_rl‘:r S(Fn-.;url fll rﬂ-LHrij—_ﬁ)
Now as curl dl=0 since d1 is a constant vector and also
curl (r/r®)=—curl grad (1/r) [as prad (1/r)= —r/rf]

wil) [as curl grad ¢=0]
So div B= +(3)

ie.  The magnetic field is solenoidal.

i =

Note :  Alternative proof of 7 +B=0

Jxr [ | 1 ___l'_]
s pete [ 25 artef 3w (7)o oo v(7)=

?'““"Eﬂ v-{-—J:x: v({-)}m

Bat as div (VxB)=B-curl V—V.curl B
T[T x 7 (1/IN]=% (1/r)+curl J—Jecurl [T(1/r)]

ie. T+ [Jx T(1[N]=—J+curl [V(1/r)] [as curl 7=0]
R _E 1
B So ?-B-E:—J Jecurl [‘T.}' F)dr
s F B 7 +B=0 [as curl grad ¢=0]

= e

§3:3. Ampere’s Circuital Law (Curl B)

According to it for steady curreots the line integral of mag-
netic induction vector B around a ciosed path is equal ro p, times
the total current crossing any surface bownded by the line integral
path i.e.

ﬁ Bﬂﬂncpnl J‘IHEF,‘I.
Q 5
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Te obtain this law consider a cucrent element Jeds and 1
closad path C as shown in fig. 3°8. The element of indvction at
P due 1o current at O by Biot-Savart law will be

ap=tbe 1X
with J EJH' s and Pl=(x—XP+(r— )+ (z—2)" .
S0 that
B=" ']-;;Ed- |
o anfe(le [aol

But as curl SV=5curl V—Vxgrad §
3 -1 " 1
curl T curl '=JF'x § (r)
[Since 7 xJ'=0 as J' is not a function of x, y and =]
. notla, (¥
S B=j S‘Tta l r) "

V XV xV=grad div V-7V

exa-tf[ofr. (H)}-o(H))

e J° -*;F_' J:- e
ie. v HE—E!_TI(T ;d‘ “&=Y !?' (r )df (1)

725 I term in equation (1) i.e.
s 6 i ol Vs
D) e e
[as J° is not a function of x, y and 2]
- u___a ¥ [—4=8 (r—r)] &

{H v (IF)=—-4::E {r—r’}]

=md [as f8(r—r)de'=1] (D
-Hlethli term in equation (1) i.e.

2y v
o ‘[ Yok ?( ﬂ‘f't

[as V+(SV)= S';;r'-\—-\’ 78]

- .
™ L
F
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S} v‘ 3o (Ur) d=*
dr
[as 7o J'=0as J'1s

_.____".T."SJ".'G'( )m— [asv ('—)—rv ( )]
o ()i §(7)
[as [V a'T=.§;v. :fs]

Now as in steady state charge can neither leave nor enler the

system, J* must be either zero or tangential at the boundary. This
in tern implies that surface integral must vanish 1.e.

not a function of x, ¥ and z]

J
g l ?'(‘F‘) el ..(3)
Substituting eqn. (2) and (3) in (1) we get
vV xB=p, J (dropping the suffix) ...(3)

This is the differential form of Ampere's circuital law and signifies
that magnetic field is rotational. In order to obtain integral form
of this law we integrate eqn. (3) over a surface § bounded by a

loop C.
[, coxmmasmty |, s
5 5

v (4)
But according to Stoke's theorem
|, (@xBds= f_Bea .5)
So from (4) and (3)
#l‘c Bliﬂ=}l,u L: J-&s:m H.[E]

*As To(SY)=85T V4+V.VS

or v’ (fi)=l—? «J +J'.qf( i

But as from continuily eyn,
TV (2pft)=0

for steady state
W eJ =1} a5 p=sconsut in seady stare

o MR
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This is the required result.  This law can be used to  compute
the magnetic induction for cases in which, by symmetry B is cons-
tant along  some integrmion path of interest. It js somewhat
similar to Gauss's law which is used to compule the electrostatic
ficld intensity E when it is constant over a closed surface,

(B)  Applications of the law

(@) B due to a long straight current carrying conductor.

Let £ be the current through the conductor
of radius R. The lines of B are concentric circles.

Hence the field B at point 2 at 2 distance r from :34:
the axis of wire is given by Ampere’s circuital law :
as b -
6, Bedimr, (1. 5
ot Bmre current crosing the """J
= bounded surface sk} |
(f) Now if r>R : Obviously current crosing Fig. 3.9.
bounded surface is /
| 50 B 2nr=p, 1
_B 2
o “_411: r -(2)
This result is same as eqn. (1) in § 3-2 (¢,)
s (#f) r<R. The current crorring the bounded surface will be
. ' --I:I.ﬁ:-. ! : J W ;ﬂ'3= .._I.-.- » ﬂ'.rE= Iﬂ
Kl _ - 1 R RE
S0 from equation (1)
oy
B x Ixr=p, {T;i
by 2
or b= FT (3
From equations (2) and (3) it is evident that B inside a cylindrical

conductor varies directly with r while outside the conductor it
varies inversely with r,

(b) Field inside a Long Solenoid,

As the solenoid is long enough and symmetrical so magnetic

induction is parallel to the axis of the solenoid by Right hand
screw rule,

.~ Todetermine the value of B out *de the solenoid, consider the
' path [ as shown in Fig, 310, From Arapere’s law for this path
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oy i § Redi=to| ©)=0

' | | | r d1=0 B=0 1)
But as = st
({{[\{ U\{ ( i E’; (; 1'-. u) ie. the ficld outside the solenoid 18

' - ZEero.
IL.,_...__] |

I o To determine the value of th;i
Fig. 210 side the solenoid we consider pat
g for which Ampere’s law results in

56” Bedl=p,NI

where N is the number of turns in length L
ie. BL=p,NI

ar” D=ty I=prnl =% (4] ()

. where n is the number of turns per meter along the solenoid. This
i 1 result is same as eqn. (2) of § 32 (c,).

= . e —

Nolc: If we hLave & metal

frli\ s pipe, instead of sole oid for
Y |

\ | $ ',BJIE#J

Fig. 311 i.e. Bdnr=, [ i.e. B=(p,/dr) (21]r)
while for path 11

B.dl=0ie. B=0 .
"

ie. ina metal pipe, field outside the pipe is (By/4m) (2U|r) while inside is
sero. However in case of a solenoid field outside is zero and inside is
(pq/dm) [dmenl]

{¢) B ata point on the axis of a Toroid,

Toroid is a solenoid bent round in the form of a closed rine.
If A is the total number of turns in the toroid and 7 is the current
=1 each turn, Ampere’s circuital law for 1 circular path shown
in fig. 312 yields '

B 1”'=Fq NI
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NI
or 5= (3, (1)
However (N1/2=r)=:n, the number of
turns per umit length. So
Hl::}lu nl ‘ {i:l

This is the desired result and is same
as for a long solenoid

i.e. eqn. 2 in case (b).

Fig. 312
§ 34, Force on current carrying conductors and charges :

From Amperes force equation (2) of § 32 it is obvious that
the force experienced by a current element I d1 situated in a mag-
netic field B is given by

dF=1dl»B
This expression holds even if the maguetic field B is produced due
to some other current or dus toa number of permanent magnets
and is used to compute force on a current carrying conductor
placed in a magnetic field or a point charge in motion in a
magnetic field as follows :

(a) Force between two parallel wires :

Let us now examine the force between two infinite long para-

llel wires carrying currents Iy and I, separated by a distance d as
shown in Fig. 3°13.

& Iy
. -’f
15=2. 4
o P~ === a:l0 — ¢ i,
< Ea e |
d
Repadsion Attroction
_ Fig. 3 13.
The current J, produces a magnetic induction .
_ iy 21, :
, H_':h:_ﬂ" at P out of page (D)
S0 dF=/[, d\,xB=1, dI, B sin 90 along OP . ~ |
j.e, dF=1,di{yB  along OF ()

L]

-
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Substituting the value of B from eqn. (1) in (2) we gel
o 2 :

dF:JI "”1 i 3 ﬂlﬂ“E DI
of EIF____JI_'[E_J__,.G

ETI de| d .. (@)
this it is clear that :—
and opposite. The force
is repulsive if the current
otherwise attractive.

This is the required result and from

(i) As action and reaction are eqaal
between 1wo current carrying conductors
.o them is flowing in the opposite directions

(iiy If d=Im and Ii=l=1amp,

dF _ P N
ar Exz=2}:lﬂ \ ewlon/meter

ie. One ampere is that current which when flowing through two
paralle! infinite long straight conductors placed in free space at @
distance of  1m apari, produces between them a force of
2% 107 Njm.

(b) Force on a point charge moving in a magnetic field.
(Lorentz Force)

The force on a current element I dl in a magnetic field B is

given by
df=1dlxB
Now if J is the current density and ds is the area of cross-
section of the conductor normal to current fiow

fdl:.l fIT
50 dF=(JxB) dr
d.
Le. T =(@xB)
()

But if there are n charged particles 3 o
- ; i s per unit volume, each
having a charge ¢ and moving with iy v I e
of § 31 g with a velocity ¥, lrom eqn. (4)
J=nqv=py .
So from eqns. (1) and (2) )
dF
de =10 (v B)=p [vin
v dit)

Gince dr is : ol
_ 1 P the fnlumu of the charge element, cquation (i
cxpress e force per unil volume of {he L‘hit'rl.‘c' ~ 'j l |I; %)
arpe carriers.  Hows

ever s i unit volume there are i charee 7
an individual charge will be A1 Pros iowd 3
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II
: 1 dF
r e o AT .(b)

This is required result and is known as Loreniz-force farmula,
However if the charged particle is moving in both electric and
magnetic fields, in addition to the above magnetic force it will
also experience an clectric force gE. In such cases the total

force acting on the charged particle will be
F=gE+ q (vxB)=q [E+(vxB)] ...[€)
Example 2. Find the clement of force dFy; caused by the
current element 1o dly on I, dly as also the force dFy on the current
element 1, dly produced by I dl,.. Show that they are unequal.

How do you reconcile your results with Newtons third law ?
(M.U. 1983)

Solution. According to
Ampere’s force law the force
on current element . [; dl, of
circuit 1 due to circuit 2 will
be

dFy,=1dl % Bs ill)

But according to Boit-
Savart law

Fig. 314

'i.ll.l_' f, tﬂ.l :N:_[
i —dxSa
. So from egus. (1) and (2)
: i o (dl;xx)
dFllsﬁ flfj iﬂl b4 ﬁi "'-rﬂ

dler) dly —(dlydls)

Y A OLCU L
[as A x (B % C)=(A+C) B—(A«B) C]

of circuit 2 due to

(2

Similarly the force on current element 1l

; circuit 1 will be
| o Dyl X ()
dFyy == el % Bx;f:dl::{‘fﬁljﬂ e

j.e. thﬂ=~‘:;l.:‘ I, f‘,[ﬁ:""_-;?_.J (85 (A xB)=—1
| ' i, =dll,) £ (dlzeT) dl, x
-;"!:‘" AT - : !.fzr . . JFn=% ;1."’ i i__’_'.._l;—.—'___——-—" .l.{m
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136 Electromagnetic Theory

Comparing egns. (a) and (b) we find that
dFyy7= — dFs

This is quite distressing, since from Newlons third law we

expect
dFu= = dFlI

However if the force due to one complete circuit is evaluated
on the other we find that

Fu=yﬁl dFy
or) dla—(dlsdly)
Le. F1:=% ;15’561952{&1 r) dlg—(dl,

Fe

MNow as

§ §, L e f anf G
=, af [ ~9(;)]ran [ss v(7)-1]
= dl,I curl grad ( ) ods,
[as fiA-di= !S curl A+ds ]

={ las curl grad of a scalar=0]

o F"=—% M’ﬁ 195‘ " M’ ' ()
Similarly
F1:=%':= f:.ffﬁ .ﬁ {m“dm r —(dl;+r) dl,
ie. FH_E Ilflﬁ ﬁ {dll"‘"l} r

()

2 ﬁ ﬁ {n'l,-r) (dl+r) dly '__Iﬁ ﬂrllilﬁ dl,s gmd( )
=_951 dl, L‘ curl grad (F)-n’s,:[l

So from eqns. (c) and (d) it is apparent (hat
Fu=—F,,
§ 35. Magnetic Scalar Potential,

. Consider a closed Ioop of curreng Eiving

rise 10 an inductj
Bat P. Let 2 be the solid angle subtandeg at P“;;.,,, :I;l,ui:,,;?

-
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Suppose we displace the point P by
the amount dh. Let d2 be the change
in solid angle subtended by the loop
at P resulting from the displacement
of P. But we can also get the same
change in solid angle d2. by keeping
F fixed and giving every point of the
loop the same but opposite displace-
ment —dh. Then from fig. 315 we
see that dQ equals the sum of solid
angles subtanded by each parallelogram
formed by dl and —dh and therefore
equals the sum of projection of these
areas along r with each divided by r®

ie. dﬂ=3ﬂ|ﬁ.__‘ﬂkf Fig. 315.
or ' dQ = —dhe YH f:.r
Now as for any scalar ¢
i, 2 o
grad ¢=i ax“]‘j E}‘]‘Iﬂ 3z
v - | . —-EE E 3 ce !
oo (grad ¢)sdh=--= dxt+=5 dy-+== dz=dg
ie . dg=(grad ¢)+dh
80 dﬂ":gmd ﬂilﬂl “‘[z}
Comparing equations (1) and (2) we find
dlxr
grad Q= ._S ="

+.(3)

Now as the magnetic induction vector B is given by
ptto | |'ﬁ"l:=-=:r‘_|+
4 r

50 in the light of equation (3) it can be written as

b
B= Fro (—grad Q)

. |
rf- o W= g
i . B:= —grad ( = 52') | .

: B=—grud O, (@)
i Thus we see that magnetic induction vector B cin be repre-
- T e gt
e s Sent

: ed as the negative gradient of a scalar function P, given by
pet) l':;'-".“."'m. o
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: __.u ! .
“"‘_I; Q (A

The sealar fanction @, is called magnetic scalar potential,
Regarding scalar potential it is worthy to note that : _

(i) It satisfies Laplace equation f.e. 7% ¢, =0, This is because
as for a magnetic ficld :

VeB=0 and B=-V ¥,
50 Vel=—GP)=0 ie. V*d,=0

(ii) The concept of magnetic scalar putcnliul leads o a con-
cept of an equivalent magnetic shell, sinee a shect of magnelised
material whose periphery coincides with the circuil gives the samc
magnelic potential provided it is every where magnetised perpen-
dicular to its plane with a magnetic moment per unit area equal
to current [ _

(iii) The concept of niagnetic scalar potential makes certam
magnetic problems identical in mathematical form: with clectro-
static one.

(iv) The concept of magnetic scalar potential is severely
limited in its applictions as it can be used to derive magnetic ficlds
only in the absence of continuous current distributions, Further
this concept connot be used if line integrals encircling any currents
are considered, or if the ficlds within current-carrying media e
desired.

Applications :

(a) @, and B for a Magnetic dipole ; (Current whirl) :

Suppose we have a current faround a small area S. Fisa
point at which ¢, and B are to be computed, '

We know that

P ifi ='“;.!ﬂ d
S
“ -
But here 2= t~"—1||"—
F
" _talSer.
%, Y=g
T | pgl Ser
g Pu g T D)
Comparing eqn. (1) with the
Bath C J potential of an electric dipole
< g - I pr
e, Y16 T P
; IH. ¥ dme, r?

¥
LS L v 1 A + e —pr #i
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Magnetlostatics 139

we find that it is appropriate to speak of this small current whirl
as a maenetic dipole of dipole moment

m=1IS. )
So in the light of eqn. (2), (1) reduces to
C oy M
P =" .
" 4w TR EY

Now

: B=—grad ¢, =~ 7 (:'-:: mr;r)
ie. B-—-—q-[ T (mer)+ {mw]?[ )]

But
V (mer)=5 (mx+my+m.z)=im,+ jmy+km.=m

and ¥ (5 )=2i & (- x e O -y Gz

_j,r
33'[‘. J:}l_ =
- i - _ #ym I (mer)r
¢ S0 B= 3'1[::?""T']
. Fol 3 (mer) T m
1.2. B= 41:[_“_1‘* 3 1 e(b)

Note : (1) If the point is on the axis of the loop §=0
o B—--[3 {m-r} r m] B, 2m
4n

“4x
This result is tame as eqn. 5 of § 32 ¢,
(2) In case of a moving charged particle as -
I=q % (v/2rr) ~
s0 m =JS=(qv/2nr)wrin=(gvr/2) n ()
However the angular momentum
L=r X p=nvrn o |
8o from egns. (1) and (2)

14
m=z_ L

"]‘hi; result i8 of great impnrl.uh.u when we

ﬁ,mtmﬂn particles. Further the quantity (g)2m) Fig, 317
A ;m:lﬂ:lmn Is called gyromagnetic ratio and plays  impowot tole in
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) @ and B for a Circular coil
' 3
As &)= ;‘—'

tor this case

“
ie.
1.c.
s
and
{as @ i3 A fﬂm. aon of = only)
. R __1'-______ = 1_;""“‘_
gF X N v B=-— 3 :ﬂ[ (ae—znt -9 TS ‘ k
B 2=lat
2. Be= [W] k
If there are N torns in the ovil, I=N1
i =N ]
= E“_[ e |
This is the requirad result and is same as aqn, (D ol F2 )

£ 36, Magnetic Vector Potential
: AVe know that magnetic induction vector B aovonding
Biﬂl-ﬁamﬂ‘; law is given by

y dlxr

. F fomhit

Bz} %
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. | ol I l_ ot -__r]
ie. B=7" i'ﬂ.}{{rgmd(}_)} [ﬂs ‘J"( = ) i
: But if vector A is not a function of position

Curl SA=S curl A—A xgrad § o
—A x grad S=curl SA—Scurl A ,

' _o! a_l
So B"dm- [curl S curl (dl}]

The second term in'the integral is zero because dl does not
depend on the co-ordinates of the*field point ,while the first term
on changiny the order of differentiation and integration yields

B=curl ‘H; L
dmr

or B=curl A. ..(A)
Thus we see that magnetic induction vector B can be represen-
ted as the curl of a vector function A given by

_ Al po{3dr o0 g1 '
A=— —‘ —f_ [35 Idi=J a:f':}. ”.{B}

i.e.

dr) r  4m
The vector function A is called magnetic vector potentiale

Regarding magnetic vector potential A it must be noted that—
(i) It satifies Poissor’s equation : '
By definition, as '
B (T 4
A_"dr:‘ Fo o

= -_& Jr ;_F'ﬂ - 1 .
' (as J’ is not a function of x, y, and z)
THA=—p I [as SV (1/r) dr'=—4n]

(if) The line integral of magnetic vector A round a closed path
gives the magnetic flux linked with the area  enclosed by the closed

S

or

path 1.e. ,
o ; By ﬁﬁ-tﬂ
¢ L. By definition
-:‘- | | By Ln..-fng-: L curl Aedls [ns ﬂﬂ.'.uurl Al
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142 Elect romagnetic 1heory

(iiiy  The divergence of maghetic vecior pui‘mrﬁm’ A iy zero or d
sealar consiant .

By definition ol A
B ocurl A

VxB=TxVxA=V (v =A) -t A

1L

But as
v xB=p,d  and JiA=—, J

| g (7eA)=0 ie. graddivA=0

This means that
ie. divAis zeroor forms a uniform scalar field with constant

value.*
(iv) There are essentially no &
r in simple form. Tae principle use of
tions made in problems related to ele

ses where A can be computed
this concept is in approxima-
ctromagnetic relations,

Applications.
(a) A and B for 4 magnetic dipole.

We know that

'.";"-' A:E Y—il--
EEI’F 2 d= ) r
*ﬁ& e 2 But as according to Stroke’s theoremf

L (—grad S]mi‘s=ﬁcsdl

_Fn_fS [1
o A=—72| grad F)xds

* For details see example —3,
{Strokes, theorem is

o I_ [ . — L]
Lq,ur Asds gich dl
If A=SB where B is a constant vectors it reduces to
L_ curl {Sll]-dﬂ=_[ﬁ¢3'l] ol

L] l I —_—

m‘s (B grad Sj-d5=!:ﬁc STedl

A1)

W L{—grml S)ds= .lﬁ.;- Sd)
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The gradient is clearly taken here w.r.t, the source coordi-
nates, and so we must change the sign il we want A in terms of
field coordinates. Morcover if the circuit is small compaced  with
the distance r the gradient of 1/r will not change appreciably over
the surface § and in the limit may be taken outside the integral.

_t 1 ,
Hence :1._4“ grad(r) % L Ids )

But as

grad (1)=—'-= and ] [ ds=m
r r g

Pof ¥
=ﬁr( r’)}{m

Bg MmXF i
or Amy — (as—r X m=m Xr) (@)
Further B=7 xA=7 X F‘“lm::r)]
But as

curl (A xB}——nA div B—(A«grad) B, for constant A

S0 B=ﬁ;’i[m dw ,— (megrad) - ]

d [r Ml r
MNow as my é—x'(r—: = ":3——3#!_11: ;s

3 (mer) r

fer  (megrad) =02 DS
And m dw-— --ml:f:i : r-‘g]=u

& 35%[3 (mer) r_;l_:] =

(b) A and B for a long current carrying wire :
Consider a long wire of length L.
If Pisa point at a distance y from

the wire, the magnetic vector poten- : ¥ -,
tial at P due to the current element J i l :;|I:, & ,-f]
dl will be given by { < &
ol dl i
dA =7~ d
dr r L
..ftn.f(éf)
L2 i 1)
s is & unit vector parallel m L8
the ;dfl‘c-:tiun of current flow, Fig 319,
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The magnetic vector potential at P due to the whole -._r:‘n: will be
obtained by integrating equation (1) between the limus (—L./2)

to (L/2)

ie. A=§¥]:L (?)i
S A i i :i: ?’"[:‘LJ:‘H% (as r*i=x*+)%)
or Augﬂ“ji [IUS [x-F4/ {-T“+}"}}I:::
)
=B o 2 AN
or A = ilo —§—+J(§+J") ws(2)

If the wire is sufficiently long so that L® g > »* equation (2)
reduces to :
]-i—[ ]+4l:l)liz
A= 0 s
G —-H-( 1+4i')”’

il 24+(2% LY
g = I"g[ 275

2
A—flog[{}ﬂ ] i
or A=:ﬂ-f—'r! li:ng£ ifasL >>y)
y i ; ..(2)
Now as B=curl A =curl [4—“ H]ng(x_) ]

=
fe. B 4“21

o
'-'.:IJl'Q.J-"‘
= §
oy

iy ]
or B“‘ﬁ; 2 "‘El‘_ (log L—lop _1-]] k

iy

¥ ______E._'I___ ==iuh__1 X
{7t (5) =108 tr-+vixtpaty
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H (D)

b B# - d n magnetic vector
fli'f.lﬂ d

~ Example 3. .S'hﬂw that through its defi ughthe relation

V thro
poteatial A is related to electrostatic pﬂfa;ﬂm.*

div A+eoto 3 _= .

Solution. BY definition A==—] —dr’

. pol o (g
50 dlmsﬁs v (r )df

of[Lgugagny (1) e
_ v 43 ?([ﬂv i

=t (30 (7 )dr

[as 7’ is not a function of X, ¥ and z]
I
afors (o [+ (-7 0]
-_E‘J V (r)m" [ﬂi T(r) o
el 1)
Now a5 V' [S‘i'}-—.‘i"i?’*'lr’-i—‘ir"i‘ﬁ‘ ‘5

E q(f_) L g% {J]—I—J’-?( )

Lo ""?'(E)ﬂ" [“)_F V') (2)
so from equation (1) and (2)

div A== “? ( )df—];‘;';&”] (3

Now converting the volume integral into surface integral by

Gauss's theorem We have
T e (r) de’ —Ji'; (J'/r)eds’

| v
divA=— [@[ )-ds I‘*""" ]

MNow as J’ is mnﬁn:d to vol =, the surface contribution must
vanish
e V'ed oJ
|-~ *—__ ]
1& div = ! d'

[as by continuity equation 7 ‘«J‘=— (2p/21)]
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[ O ‘
or IV A i e o
s o V(e 4.,
il div A= L I|‘~|' I.“I'I I -.‘trl.l'u“' " 1
1' ;
G (4)

Henee proved,

Wote : This resalt b5 called Lorents comdithon and 16 disenssed n 410,
Further as pgeg= U1c®) above comditlon can be wiliten ot

I II]r'
iy Ae= KR o (5)
In cose of sealdy state Peeconstt, Lo, (V)0
= iy A& =) ealfi)

Fanss (9 and (6) are in aceordanee with () of § 36,

F.Eﬂ-mlﬂl." 4. 4 ,llrll.;l.' ntinrher N l:r,l" .r'fu.'l.'r'.'lr J.'ﬁﬁr‘vl‘:f fHFRN H_,rlfr'ﬂr
wire are womnd in oo single laver upon the  surface of a wooden
sphere of radins a, with the planes of the tvens . perpendicular o the

oo axisof the sphere and completely covering its sueface,  If the enrvent
. inthe winding is I. determine the veetor potential A and the field B
- the centre of the sphere, (M.U, 1975)

Solution. We know that A- R "ﬂr
dn) r =

But as the current flows only in surface Jdr--J, dv lor this

case A =—’-‘—’!-§T—*-l-{:'
=) r
P e Now since the magnitude of J, is
; uniform throughout the surface, it is obvious
i3 o from the symmetry that
i A=) ()
% Ja¥r
ﬂ — But dite= 4-—7; —,'_—-r-
- le. A=l {—dv n(ns Jxr=Ta sin 90
dmat ) ' )
It is obvious once again (rom symmeltry
considerations (hat only that component of
]};:iiu contribute 10 B which s parallel o
Fjl;' 320, L Bmg-:-g];l:u‘—ﬂ ey n; H

e L =
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"
P“ :unr? 27a sin §) adé n;
ie. B="y 2% E (27 )
"’"'r " gin® 0 d9 n,
ie. B= . 2 | sin
ie B= o 211:.1] # (1—cos 20) dé n.

sin 20
1.e. ]'i.—_-g:—:h.fn;[ 4 ( ¢ ——-—2-—-)1
Mo w)_Foj.2g
=Elﬂln:(2) 41-:‘!#
But here J=(N/=a)
_Fe "':szﬂ Gh N_IE] .
- T A =

= 47 wa a
§37. Maltiple Expansion of a carrent distribution or Vector

potential A

iven current distribution as shown in fig. 321 the

Forag
vector pm::nt_nl Ais

do (I dr _po (L
w) R [as J dr’=1 dr’]

(1)
But from fig. 3'21

1 | 1

R Tr—r"| _[r“+r’=—2rr cos )1

| 2r : -1/2
f.e. R r[ ]-——-—cus E+ ]
i 1_1 1 N o ;
£, I cos 04z ] with z=r‘/r.

Now as (1—2z cos @--z8)~12 is
the generating function of Legender
polynomial i.e.

(1 —2z cos @-}-z%)~1a

= Py (cos @) z"

1 1T hm
So ﬁmF-P{.} (cos ﬂ](:_; ) ] 0

Fig. 3-21.

t+msﬂ( )-E-i[ﬂcns'ﬂ l}( )'4__..]
F cos H+=— 4 (3 cos? 0—1)... ]
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148
, O 4
i.c. lh=[;+?r+*-- ] )
So subitituting the value of (1/R) from eqn. (2) n l;l] we get
* ST ¢ p) dr’=f
agﬁﬁﬁrm44m,ﬁf& ) ]

From this it 15 clear that

- X It. ,
This is the required resu ments dr’ round a closed loop 1s

(1) As the vector sum of ele
Zero i.e. [ﬁ [ dr'=0 ; the first term 1.e. monopole term 15

This conclusion agrees with the fact that free magnetic poles
do not exist, :

(2) As for a scalar §
ﬁsm=—8?5xﬁ
[See foot note in § 3'6 application (a)]
f;e. g‘i (r’=r1) dr'= —‘ V' {r'-r}‘;-e:d's
so the second term in egn. (a) reduces to

= ! 17’ (x'sr) X ds

~ 4nr?

ZEro.

-

Now as
’ fut 0 .
v ({'.r)=Zi o (x xV=Z i x=r

The above term reduces to

___,._;T_:t:‘: 5 frxds=—;;—!;-ll‘}{§ Ids
o)
~ 43 T XM [asg Ids:m]
Mo {m_xl':l

(As r X m=—mx r)
i.e, the second term represents potential dye to magnetic dipole ;
as the first i.e. monhapole term is zero. It is the I:-u:c.i'irl & renﬂ ] ﬂ-‘;ﬂ
E_rpﬂm{m_.j in the
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7 nr —:-.'+ X
ThY oS’ ()
while m.m.f=N/~2rrnl . (2)
50 the flux
2nrnl

ba= [Irrr+ _1 3
KBS S ] (3)
When the thickness x of the air gap is

very small compared to the diameter of
the pole faces the spreading of the flux

Fig. 3-30
in the air gap is negligible so that $=35" and hence the fluz density
at any point in the magnetic circuit will be

P 2mrnl
nzrux_l_jc__]
[ M e o)

Further since g » p, for Iron, the reluctance of the circuit is
largely provided by the air gap, unless the air gap is very narrow,

Symmetries in Electrostatics and Magnetostatics.

1 o K‘.://Elecftrustutics ‘ Magnetostatics
| |
| 1 {pr e J__r
Lo E‘ET[_"’I' (1) B=iz] 7
i L | 2) div B=0
(2) div Er'“ (2)
(3) curl Esﬂ (3) curl A=p, J
Jd
@) V= — Pﬂ. (4) .h_- : [
| o d e
L (5) E= —-grﬂ.l'.i 4 (5) B=—grad P,
L (6) F=4E (6) F=q (vx B)
54 (7) p'=—div P (7) Jp=curl M
|-1 ' {E] ’;F:F-n (R) JSHJ_.—.]'.'IHI'I
: (9) « ;'ﬂ"n (9) B~ FH':.
3 ..\' F Uﬂ] Pr_..[ X
L o (1) M=XaH
) s | (12) B-=pH

(12) D=eE '
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(13) D=¢E+-P (13) B=p, (H+M)

(14) p:zqu (14) m=17S

15) = BT . e

(5) Porpesa (15) =S 27

16) E=[ 2P+ 30X (16) B= [—+3 mer) £
- i %

(17) r=pxE e it

(18) Up=—p-E HE B med

19) U=

(19) 5“ PV dr (19) U=} ‘ JeA dr

20) U=3{E+D 4 @0 v=} | Hep o

@1) u=}eE? :

| (21) .= FuHe

Correspondences in Electrostatics and Magnetostatics

Electr
.. ostatics Magnetostics
O o e o
1 (13 Cou ’t“ ::‘“’ (1) Boit-Savart Law
& =dng) P O B=te (L4
;_ e 4w | p3
2) Gau
(2) EE;:S II-“" (2) Amperes Law
@ ’ —;' TPdT ﬁﬂﬂﬂ:—rp‘{i Jods
(3) D=eE 3) H'-‘ll
=|'_1E+P !
He=— B-.
i M
== é:—*m

Note. It is worthnoting that corres
pond
: depends on the medium while D Corresponds (o | j-.s:;tnh 35 o
Lk depend on the medium, i

Scanned with CamScanner



